Rationality questions for Fano schemes of intersections of two quadrics

(joint work with Lena Ji)

Fumiaki Suzuki Leibniz University Hannover

April 12, 2024

Table of Contents

- Introduction
- 2 Hyperbolic reductions
- N odd
- 4 N even and $k = \mathbb{R}$

k: arbitrary field of characteristic $\neq 2$ $X \subset \mathbb{P}^N$: smooth complete intersection of 2 quadrics

 $r \geq 0$, $F_r(X) :=$ Fano scheme of r-planes (i.e., $\mathbb{P}^r \subset \mathbb{P}^N$) on X.

Description of $F_r(X)$:

r	N odd	N even
$r = \lfloor \frac{N}{2} \rfloor - 1$ (max)	torsor under an abelian variety (Weil '50s)	finite, not geometrically integral
$0 \le r \le \lfloor \frac{N}{2} \rfloor - 2$	Fano, i.e., $-K$ ample	Fano, i.e., $-K$ ample

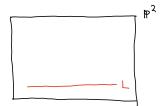
N odd: $F_r(X)$ is geometrically a certain moduli of vector bundles on a hyperelliptic curve (Desale–Ramanan '78, Ramanan '81).

 \rightarrow arithmetic applications

A variety is rational if it is birational to a projective space.

If there exists a line $L \subset X$ defined over k, consider the projection away from $L: \pi_L: X \dashrightarrow \mathbb{P}^{N-2}$.

Fibers of π_L ?

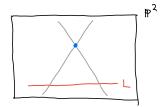


 π_L is birational, hence X is rational.

A variety is **rational** if it is birational to a projective space.

If there exists a line $L \subset X$ defined over k, consider the projection away from $L: \pi_L: X \longrightarrow \mathbb{P}^{N-2}$.

Fibers of π_L ?



 π_L is birational, hence X is rational.

Theorem 1 (Ji-S., '24)

If $F_{r+1}(X)(k) \neq \emptyset$, then $F_r(X)$ is rational.

Immediate consequence:

Corollary

 $F_r(X)$ is geometrically rational for all $0 \le r \le \lfloor \frac{N}{2} \rfloor - 2$.

- $r = 0, \lfloor \frac{N}{2} \rfloor 2$: known (latter by combining: Desale–Ramanan '77, Newstead '80, Bauer '91, Casagrande '15)
- $0 < r < \lfloor \frac{N}{2} \rfloor 2$: new, even over $\mathbb{C}!$

Theorem 2 (Ji-S., '24)

For $N \ge 6$, the following are equivalent:

- \bullet $F_1(X)$ is separably unirational;
- \circ $F_1(X)$ is unirational;

If $k = \mathbb{R}$, the above result holds for $F_r(X)$ for all $0 \le r \le \lfloor \frac{N}{2} \rfloor - 2$.

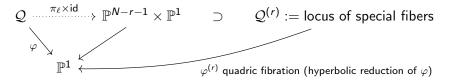
This extends an analogous result for $F_0(X) = X$ (Manin '86, Knecht '15, Colliot-Thélène–Sansuc–Swinnerton-Dyer '87, Benoist–Wittenberg '23).

Table of Contents

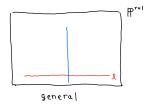
- Introduction
- 2 Hyperbolic reductions
- N odd
- 4 N even and $k = \mathbb{R}$

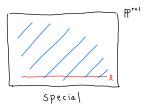
Let $\varphi \colon \mathcal{Q} \to \mathbb{P}^1$ be the pencil of quadrics, associated to X.

Assume $F_r(X)(k) \neq \emptyset$ and fix $\ell \in F_r(X)(k)$.



Fibers of $\pi_{\ell} \times id$:

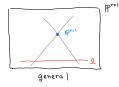


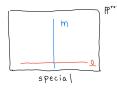


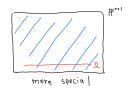
Similarly,

$$X \xrightarrow{\pi_\ell} \mathbb{P}^{N-r-1} \supset \widetilde{\mathcal{Q}}^{(r)} :=$$
 locus of special (and more special) fibers

Fibers of π_{ℓ} :







Note

$$\widetilde{\mathcal{Q}}^{(r)} \xrightarrow{\sim} \ \mathcal{Q}^{(r)}, \ m \mapsto \langle \ell, m \rangle,$$

where the inverse is given by $\mathbb{P}^{N-r-1} imes \mathbb{P}^1 o \mathbb{P}^{N-r-1}$.

The birational equivalence class of $\mathcal{Q}^{(r)}$ does NOT depend on ℓ . Indeed,

$$\mathcal{Q}_{k(\mathbb{P}^1)} \simeq \mathcal{Q}_{k(\mathbb{P}^1)}^{(r)} \perp ext{(hyperbolic space)}$$

as quadratic spaces, hence the Witt cancellation theorem shows that the isomorphism class of $\mathcal{Q}_{k(\mathbb{P}^1)}^{(r)}$ does not depend on ℓ .

Here is a birational structure theorem of $F_r(X)$ in terms of $Q^{(r)}$.

Theorem 3 (Ji-S., '24)

One of the following conditions holds:

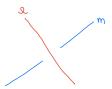
- $F_r(X)$ is birational to $\operatorname{Sym}^{r+1} \mathcal{Q}^{(r)}$;
- ② N is even and $r = \lfloor \frac{N}{2} \rfloor 1$, in which case $F_r(X)$ is finite and not geometrically integral.

Two special cases were previously known before:

- r = 0, which claims $X \sim Q^{(0)}$ (Colliot-Thélène–Sansuc–Swinnerton-Dyer '87);
- N is odd, $r = \lfloor \frac{N}{2} \rfloor 1$, and $k = \overline{k}$ (Reid '72).

Proof of Thm 3:

r=1: Let $m\in F_1(X)$ be general. Then $\langle \ell,m\rangle=\mathbb{P}^3$.



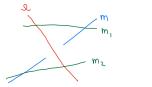
$$\langle \ell, m \rangle \cap X = \ell \cup m \cup m_1 \cup m_2$$

Define $F_1(X) \longrightarrow \operatorname{Sym}^2 \mathcal{Q}^{(1)}$, $m \mapsto (m_1, m_2)$, which is generically one-to-one onto its image. Similar for r > 1. (Use a lemma of Reid.)

Finally, dim $F_r(X) = \dim \operatorname{Sym}^{r+1} Q^{(r)} = (r+1)(N-2r-2)$, hence the above map is dominant, thus birational. Q.E.D

Proof of Thm 3:

r=1: Let $m\in F_1(X)$ be general. Then $\langle \ell,m\rangle=\mathbb{P}^3$.



$$\langle \ell, m \rangle \cap X = \ell \cup m \cup m_1 \cup m_2$$

Define $F_1(X) \longrightarrow \operatorname{Sym}^2 \mathcal{Q}^{(1)}$, $m \mapsto (m_1, m_2)$, which is generically one-to-one onto its image. Similar for r > 1. (Use a lemma of Reid.)

Finally, dim $F_r(X) = \dim \operatorname{Sym}^{r+1} Q^{(r)} = (r+1)(N-2r-2)$, hence the above map is dominant, thus birational. Q.E.D.

Thm $3 \Rightarrow$ Thm 1:

If $F_{r+1}(X)(k) \neq \emptyset$, then $\varphi^{(r)} \colon \mathcal{Q}^{(r)} \to \mathbb{P}^1$ has a section. $\Rightarrow \mathcal{Q}^{(r)}$ is rational. $\Rightarrow F_r(X) \sim \operatorname{Sym}^{r+1} \mathcal{Q}^{(r)}$ is rational. Q.E.D.

We have used:

A symmetric power of a rational variety is rational (Mattuck '69).

$\underline{\mathsf{Thm}}\ 3 \Rightarrow \underline{\mathsf{Thm}}\ 2$ (k arbitrary):

W.T.S. $\forall N \geq 6$, $F_1(X)(k) \neq \emptyset \Rightarrow F_1(X)$ separably uniratinonal.

A symmetric power of a separably unirational variety is separably unirational.

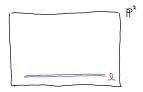
E.T.S. $\forall N \geq 6$, $F_1(X)(k) \neq \emptyset \Rightarrow Q^{(1)}$ separably uniratinonal.

We prove this by induction on N.

$$N=6$$
: $X\subset \mathbb{P}^6$

 $\varphi^{(1)} \colon \mathcal{Q}^{(1)} \to \mathbb{P}^1$ is a conic bundle with 7 singular fibers.

Moreover, $\mathcal{Q}^{(1)}(k) \neq \emptyset$, because $\cap_{p \in \ell} T_p X = \mathbb{P}^2 \supset \ell$ and $(\cap_{p \in \ell} T_p X) \cap X = \ell$.



Such a conic bundle has a dominant map from \mathbb{P}^2 of degree 8 (Kollár–Mella '17).

 $\mathcal{Q}^{(1)}$ is separably unirational. (Recall char $k \neq 2$.)

$$N > 6$$
: $X \subset \mathbb{P}^N$

Choose a general pencil of hyperplane sections of X containing ℓ .

We get $\mathcal{Q}^{(1)} \dashrightarrow \mathbb{P}^1$ whose generic fiber equals the hyperbolic reduction of the pencil associated to $Y \subset \mathbb{P}^{N-1}$ with respect to ℓ .

By the induction hypothesis, the generic fiber is separably unirational, and so is $\mathcal{Q}^{(1)}$. Q.E.D.

$\underline{\mathsf{Thm}}\ 3\Rightarrow \underline{\mathsf{Thm}}\ 2\ (k=\mathbb{R})$:

$$\widetilde{\mathcal{Q}}^{(r)} \subset \mathbb{P}^{N-r-1}$$
 has odd degree.

(For instance, $\widetilde{\mathcal{Q}}^{(0)} \subset \mathbb{P}^{N-1}$ is a cubic hypersurface.)

 $\Rightarrow \mathcal{Q}^{(r)}$ has a 0-cycle of degree 1.

$$\Rightarrow \mathcal{Q}^{(r)}(\mathbb{R}) \neq \emptyset.$$

Apply a unirationality result (Kollár '99) to the quadric fibration $\varphi^{(r)} \colon \mathcal{Q}^{(r)} \to \mathbb{P}^1$. Q.E.D.

A conic bundle over \mathbb{P}^1 with a 0-cycle of degree 1 does not necessarily have a k-point (Colliot-Thélène–Coray '79).

Next: We will further analyze rationality of $F_r(X)$ for $r = \lfloor \frac{N}{2} \rfloor - 2$, the second maximal case.

Table of Contents

- Introduction
- 2 Hyperbolic reductions
- N odd
- 4 N even and $k = \mathbb{R}$

$$N := 2g + 1 \ (g \ge 2)$$

max = g - 1, second maximal = g - 2

Theorem 4 (Ji-S., '24)

Let $X \subset \mathbb{P}^{2g+1}$. Then:

$$F_{g-2}(X)(k) \neq \emptyset$$
 and $\mathcal{Q}^{(g-2)}$ rational $\Leftrightarrow F_{g-1}(X)(k) \neq \emptyset$.

- g=2: $X\subset \mathbb{P}^5$ is rational $\Leftrightarrow F_1(X)(k)\neq\emptyset$ (Hassett–Tschinkel 18' for $k=\mathbb{R}$, Benoist–Wittenberg '23 for k arbitrary).
- $g \ge 2$: partial converse to Thm 1, different from the full converse by a symmetric power: $\mathcal{Q}^{(g-2)} \leftrightarrow \mathcal{F}_{\sigma-2}(X) \sim \operatorname{Sym}^{g-1} \mathcal{Q}^{(g-2)}$.
- An analogue may fail for N even and $k = \mathbb{R}$.

Towards the proof of Thm 4:

 $F_{g-1}(X)$ is a torsor under the Jacobian of C, where C is a hyperelliptic curve of genus g associated to $\varphi \colon \mathcal{Q} \to \mathbb{P}^1$ (Wang '18).

$$F_g(\varphi) \longrightarrow \mathbb{P}^1$$

$$C.$$

W.T.S. $F_{g-1}(X)$ splits $\Leftrightarrow \mathcal{Q}^{(g-2)}$ defined & rational.

Note: dim $Q^{(g-2)} = 3$.

Idea: Clemens-Griffiths method à la Benoist-Wittenberg.

The goal is to show that $F_{g-1}(X)$ is a torsor under the intermediate Jacobian of $\mathcal{Q}^{(g-2)}$ (\cong Jac(C) as p.p.a.v.) and it splits when $\mathcal{Q}^{(g-2)}$ is rational.

This involves analysis on the algebraic equivalence class of a section of the quadric surface fibration $\varphi^{(g-2)} \colon \mathcal{Q}^{(g-2)} \to \mathbb{P}^1$.

Table of Contents

- Introduction
- 2 Hyperbolic reductions
- 3 N odd
- **4** *N* even and $k = \mathbb{R}$

$$N:=2g\ (g\geq 2)$$

max = g - 1, second maximal = g - 2

Theorem 5 (Ji-S., 24')

Let $X \subset \mathbb{P}^{2g}$ over \mathbb{R} . Then:

 $F_{g-2}(X)$ rational $\Leftrightarrow F_{g-2}(X)(\mathbb{R})$ non-empty and connected. Moreover, these conditions are equivalent to rationality of $\mathcal{Q}^{(g-2)}$.

- \Rightarrow is true for all smooth projective varieties over \mathbb{R} (Comessatti, 1912).
- $X \subset \mathbb{P}^6_{\mathbb{R}}$ rational $\Leftrightarrow X(\mathbb{R})$ non-empty and connected (Hassett–Kollár–Tschinkel '22).
- An analogue may fail for N odd.

Towards the proof of Thm 5:

Let X as in Thm 5 and assume $F_{g-2}(X)(\mathbb{R}) \neq \emptyset$.

 $\varphi^{(g-2)}\colon \mathcal{Q}^{(g-2)}\to \mathbb{P}^1$ is a conic bundle, hence $\mathcal{Q}^{(g-2)}$ is a geometrically rational surface.

Towards the proof of Thm 5:

Let X as in Thm 5 and assume $F_{g-2}(X)(\mathbb{R}) \neq \emptyset$.

 $\varphi^{(g-2)}\colon \mathcal{Q}^{(g-2)}\to \mathbb{P}^1$ is a conic bundle, hence $\mathcal{Q}^{(g-2)}$ is a geometrically rational surface.

A geometrically rational surface defined over $\mathbb R$ is rational if and only if its real locus is non-empty and connected (Comessatti 1913).

where the right vertical arrow follows by studying the image of

$$\operatorname{\mathsf{Sym}}^{g-1}\mathcal{Q}^{(g-2)}(\mathbb{R}) \to \operatorname{\mathsf{Sym}}^{g-1}\mathbb{P}^1(\mathbb{R}) \xrightarrow{\sim} \mathbb{P}^{g-1}(\mathbb{R}).$$

Thank you!

